欢迎光亚博平台APP链接官网!

傻瓜教程——医学统计学:亚博平台APP链接

发布时间:2022-01-15 人气:

本文摘要:作为一名临床医师,或是医学生,不管你愿意不愿意,都必须写论文。医学论文有别于其他论文,我们那些“神圣”的数据都必须举行统计学处置惩罚,这时,大多数人会遇到一个难题,大学时期学过的《医学统计学》早就忘得差不多了,重新掀开统计学书本,基本上也是看得云里雾里。

亚博平台APP链接

作为一名临床医师,或是医学生,不管你愿意不愿意,都必须写论文。医学论文有别于其他论文,我们那些“神圣”的数据都必须举行统计学处置惩罚,这时,大多数人会遇到一个难题,大学时期学过的《医学统计学》早就忘得差不多了,重新掀开统计学书本,基本上也是看得云里雾里。为了不让同学们再次重温早年学习统计学时的那种痛苦的体验,蚍蜉撼树,特编写《医学统计学傻瓜教程》,本教程有别于其他任何的统计学教程,其特点是略去一些高深难明的统计学原理及盘算公式,直奔解决实际问题的方法,小学小用,大学大用,尚有妙用。

你不需要任何的统计学基础,为了不引起你的反感,不会泛起任何一道数学公式。本教程分“基础篇”及“提高篇”两个部门,学完“基础篇”即可解决绝大多数的统计学问题,学完“提高篇”,“降龙十八掌”的武功已修练到“第10层”,足以让你的同事对你另眼相看。整个学习时间约需要2~3小时,在学习之前,我们需要到网上下载一个小工具,即《临床医师统计学助手 V10.0》),因为举行统计学处置惩罚时最令人头痛的问题是烦琐的盘算,则全部由预存在本软件内的盘算公式来完成。

这是一个全“傻瓜化”的教程,“基础篇”及“提高篇”各由数个实例组成,只要认真看完这些实例,将实际中遇到的问题对号入座即可,接下来我们开始轻松愉快的学习历程。一、基础篇1、均数与尺度差【例1】本组105 例, 男55例, 女50例;平均年事:62.3±6.1岁,所有入选病例均切合1999年WHO高血压诊断尺度。举这个例子是为了说明“均数”与“尺度差”的观点。我实在不愿意多花时间论述一些观点性的工具,可是由于“尺度差”的观点实在太重要了。

【例1】中的数据“62.3±6.1”,“62.3”就是年事的均数,均数的观点大家都懂,那么后面的“6.1”是什么呢?它就是尺度差。有人可能会问,表达一组人的平均年事,用均数就够了,为什么还要加一个尺度差呢?先看下面的一个例子:有两组人,第1组身高(cm):98、99、100、101、102;第2组身高(cm):80、90、100、110、120,这两组人虽然身高的均数都是100cm,可是,仔细视察,第1组的身高很靠近,第2组的身高差异很大,故仅仅用一个平均数表达一组数据的特征是不完整的,还需要用另一个指标来表达其乱七八糟的水平,这就是尺度差。

统计学上对一组丈量效果的数据都要用“均数±尺度差”表现,习惯表达代号是:±s,详细例子如:平均收缩压120±10.2mmHg。我想现在同学们都已知道尺度差是什么东东了,那么,尺度差是怎样获得的呢?有一个比力庞大的盘算公式,我们不必去深究这个公式是怎么样的,只需知道尺度差越小,说明数据越集中,尺度差越大,说明数据越疏散。撰写医学论文的第一步是收集原始数据,如: 第1组身高(cm):98、99、100、101、102; 第2组身高(cm):80、90、100、110、120。

在论文中并不是直接给出原始数据,而是要以±s方式表现。使用软件《临床医师统计学助手 V10.0》,只要输入原始数据,就能自动盘算出均数及尺度差,即第1组平均身高:100±1.58cm;第2组平均身高:100±15.81cm,如下图。2、两样本均数t磨练【例2】目的 研究中药板兰根对“非典”疗效。

方法 将36例“非典”患者随机分为治疗组19例,接纳通例治疗+板兰根口服,对照组17例,仅接纳通例治疗。效果 治疗组平均退热时间3.28±1.51d;对照组平均退热时间5.65±1.96d,两组间对照差异有极显著意义(p<0.01)结论 中药板兰根对“非典”有显效疗效,实为国之瑰宝。

这是最常见的一种统计学数据处置惩罚类型,统计学述语叫做“两样本均数差异t磨练”,说得通俗易懂一些,就是磨练两组方法所获得的数据到底有没有差异,或者说,差异是否有意义。我们平时的思维习惯是,数据的巨细还用得着磨练吗?这是小学生都市的问题,可是统计学可不是这样简朴的看问题。可能还没有说明确这个问题,下面举一个简朴的例子。

我们的目的是得出这样一个结论:“北京生产的西瓜比上海生产的西瓜大”。最可靠的方法是把全部的北京产西瓜和全部的上海产西瓜都称重量,获得两个均数,然后比巨细即可,可是智商正常的人并不会这样去做,通常的做法是,随机选一部门北京的西瓜和一部门上海的西瓜,先让这两部门西瓜比巨细,然后推断到底那里的西瓜大。这种方法是“窥一斑可见全豹”,统计学述语叫做“由样本推断总体”,事实上,我们所做的医学科研都是基于这种方法。

再回到上面的例子,如果我们有二种做法:A、随机选2个北京西瓜,平均重量是5.6±0.3kg;再随机选2个上海西瓜,平均重量是4.3±0.25kg;B、随机选1000个北京西瓜,平均重量是5.6±0.3kg;再随机选1000个上海西瓜,平均重量是4.3±0.25kg。凭我们的直觉和生活知识,由B推出“北京的西瓜比上海西瓜大”这个结论的掌握性就很是的大,而A则基本上推不出这个结论。

为什么这样说呢?北京全部的西瓜叫“总体”,随机选择的2个西瓜叫“样本”,通常我们不会拿“总体”去比巨细,这太难题了,而总是拿“样本”去比巨细,这样就可能会有一个问题,你所抽到的样本,可能都是最大的西瓜,也可能都是最小的西瓜,这样由样原来推断总体就可能会泛起错误(抽样误差),如何来解决这个问题呢,这就是统计学所研究的问题,总体来说,样本量越小,抽样误差越大,由样本推断总体的掌握性越低,从上面例子中,相对B而言,A的可靠性就很低。现在,终于可以引出我们的主题了,统计学处置惩罚本质是研究由样本差异推断总体差异的掌握性有多大,这种掌握性在统计学上用p值表现。如p<0.05或P<0.01,可以明白为由样本差异推断总体差异的掌握性达95%或99%以上;如P>0.05,可以明白为这种掌握性在95%以下。

上面所讲的实已为统计学之精髓,也是本教程最艰难的部门,建议多看几遍。如果天生愚鲁,还是不明确,也没有关系,我们可以简朴的明白为所谓统计学处置惩罚,实际上是为了弄明确两组数据的差异由抽样误差造成的可能性有几多?这种抽样误差的可能性由p值来表现,p<0.05或p<0.01,说明抽样误差的可能性很小(低于5%或1%),两组数据差异有显著意义;p>0.05,说明抽样误差的可能性很大(高于5%),两组数据差异没有显著意义。所以,统计学处置惩罚的中心任务是求p值。

那么如何求p值呢?这里原来需要例举出一大堆的数学盘算公式,可是现在不这样做,我们由软件来直接盘算。联合【例2】,详细操作如下。【例2】中一共有6个数据:第一组均数(X1)、尺度差(S1)、例数(N1)与第二组均数(X2)、尺度差(S2)、例数(N2),把这6个数据输入软件对应的框内,该软件就会使用预先存储的公式自动盘算t值,并得出p<0.01,由此判断两组间的差异具有极显著的意义(如果没有想成为统计学专家,就不必去明白“t值”是什么了,知道“t值”是为了求“p值”用的就可以了),如下图。

3、配对计量资料t磨练【例3】目的 研究音乐胎教对胎儿运动技术造就的效果。方法 10例28~32周孕妇,划分记载听音乐(水浒传电视剧主题曲)前每小时的胎动次数及听音乐后每小时的胎动次数,效果 数据如下表所示,音乐胎教后胎动次数增多,差异有显著意义(p<0.0525)结论 音乐胎教可增强胎儿运动技术,对造就我国运动天才有现实意义。显然【例3】与【例2】有所差别,主要是【例3】两组间的数据可以前后配对的。我们经常遇到这种情况,即同一个体做两次处置惩罚,如治疗前检测某一指标,治疗后再检测某一指标,尔后做治疗前后配对比力,以判断疗效。

这种情况如何举行统计学处置惩罚呢?在软件中选择“配对资料t磨练”,划分输入上面的2组数据,软件自动盘算p<0.05,差异有显著意义,如下图。可能同学们会问,【例3】的情况,也可以把胎教前视为对照组,求得平均胎动次数是:21.8±5.31,胎教后视为治疗组,求得平均胎动次数是:24.0±6.31,然后套用【例2】的方法,用“两样本均数t磨练”行不行?这样虽无大错误,可是将会导致磨练效率的下降,就是说,如果数据差异较大时,两种方法均可,如果数据差异较小时,用“配对t磨练”会显示出差异有意义,而用“两样本均数t磨练”时,可能差异无意义。

切记,非配对资料误用配对t磨练,则是错误的。4、计数资料卡方磨练【例4】目的 研究医患关系对重症病人死亡率的影响。方法 凭据问卷观察对收住重症监护病房的病人分为“医患关系良好组”与“医患关系紧张组”,比力两组间的住院死亡率。

亚博平台APP链接

效果 “医患关系良好组”25例,住院间死亡3例,死亡率13.6%,“医患关系紧张组”23例,住院间死亡9例,死亡率39.1%,两组间差异有显著意义(p<0.05)结论 医患关系紧张增加重症病人的住院死亡率,可能与医师畏惧挨打而治疗方案趋向守旧有关。这又是一个很是常见的一种统计学数据处置惩罚类型。

【例4】中所提供的数据是“比例”,或百分数,与前面三个例子差别,前面三个例子所提供的数据则是直接在病人身上丈量到的数据,如收缩压120±10.2mmHg、身高100±15.81cm等,我们把【例4】中的数据叫做计数资料,而【例1、2、3】中的数据叫做计量资料。计数资料无法用“均数±尺度差”形式表现,只能用比例表现,如:死亡率13.6%、30例中显效10例(10/30)等。显然,对于计数资料,再用t检是不适合了,必须用卡方磨练。

卡方磨练的步骤是:先求出X2值(类似于t磨练时先求t值),然后举行判断: ⑴ 如果X2<3.84,则p>0.05;⑵ 如果X2>3.84,则p<0.05;⑶ 如果X2>6.63,则p<0.01。解释一下,上面的两个数字“3.84”与“6.63”是查“X2界值表”得来的,只要记着即可。

所以,卡方磨练的关键是求出X2值。为了求出X2值,必须先先容“四表格”观点。“四表格”的形式如下,关键数据是 a、b、c、d 四个数,X2值就是通过这四个数据盘算出来的(这里仍不先容公式,由软件盘算。

)。现将【例4】中的数据填入“四表格”即如下图。当你学会了填“四表格”数据之后,就能使用软件很是容易的举行卡方磨练了,本软件提供与“四表格”完全相同的界面,选择“计数资料卡方磨练”,把数据填写正确之后,就自动盘算X2值并判断效果,【例4】X2=4.702>3.84,故p<0.05,如下图。

在此说明一下,大家可能已注意到本软件中泛起的“理论数(T)”,在此不解释“理论数(T)”是什么,只要记着,当例数(n)<40或T<1时,应接纳“准确概率法”,这个方法太庞大,在此不作先容。5、配对资料卡方磨练【例5】目的 研究蚂蚁对慢性乙型病毒性肝炎的疗效。方法 40例慢性乙型病毒性肝炎患者天天口服活蚂蚁10只,半年后检查e抗原。效果 治疗前e抗原阳性率67.5%,治疗后e抗原阳性率下降为12.5%,X2=15.75(p<0.01)结论 活蚂蚁对慢性乙型病毒性肝炎有显著疗效。

与【例3】相似,这也是一个治疗前后对照的实例,所差别的是【例3】是计量资料,【例5】是计数资料,这时,该接纳“配对资料卡方磨练”。首无,我们把本例的原始资料整理如下: 然后,在软件中选择“配对资料卡方磨练”,把上面的数据划分填入表格中(请注意与原始数据的对应关系), X2=15.75,p<0.01,如下图。

二、提高篇6、方差分析(F磨练)【例6】某院外科对三种消毒剂的杀菌效果举行考察。经由使用,以被消毒物品的残余细菌数(cfu/m2)为评价指标,试验效果如下表,试问三种消毒剂的效果是否存在差异?现在,我们来分析这个例子,与【例2】一样,本例也是计量资料,所差别的是,【例2】是两组,本例是三组。是不是本例也可以用“两样本均数t磨练”方法,划分举行两两比力呢?谜底是不行的,将会导致磨练效率的下降,这时正确的统计学方法是方差分析(F磨练)。

有须要重复一次,两组计量资料的比力应用“t磨练”,多组计量资料的比力应用“F磨练”,下面先容方差分析的方法。(1)选择“方差分析(F磨练)”,划分输入三组的原始数据,软件会自动盘算每组的均数±尺度差,如果已知每组的均数±尺度差,可在对应的表格内直接输入,不必再输入原始资料。(2)软件会自动盘算F值(注意不是t值)及p值,p<0.05或p<0.01表现三组间不全相同,即至少有两组是差别的,而不是全不相同。(3)当知道三组消毒剂的效果纷歧样后(p<0.05),我们仍然无法知道是不是三种消毒剂每一种效果都纷歧样,也不知道三种消毒剂哪一种效果最好,哪一种效果最差,如果想回覆这些问题,需要举行两两比力。

本软件提供2种两两比力的方法,即“两两比力q磨练”及“两两比力LSD-t磨练”,效果基本上是一致的。7、多样本率卡方磨练【例7】某院研究差别药物对焦虑患者的疗效,患者随机分为三组,划分为阿米替林组、帕罗西丁组、慰藉剂组,问三组间疗效是否存在差异?四表格卡方磨练是最简朴的形式的卡方磨练,当遇到多组卡方磨练时,需要接纳行×列表卡方磨练,如下图。几点说明:1、行×列表卡方磨练具有广泛的适用性,但要求每个格子的理论数足够大,如果发现某个格子中的理论数太小,应扩大视察例数。2、于品级资料,如临床疗效分为治愈、显效、好转、无效,临床磨练效果分为 +、++、+++ 等,带有显着的半定量性质,对于品级资料行×列表卡方磨练缺乏敏感性,应接纳秩和磨练或Ridit分析(下述)。

3、行×列表卡方磨练效果p<0.05或p<0.01表现各组间不全相同,而不是全不相同。8、用秩和磨练及Ridit分析【例8】某院研究差别药物对支气管哮喘的患者的疗效,患者随机分为二组,划分为激素组、中药组,问两组间疗效是否存在差异?本例为品级资料,应接纳秩和磨练或Ridit分析,如下图(70%的医学杂志对等资料误用卡方磨练!)。秩和磨练与Ridit分析可任选一种方法,首先都是求出“Z值”,然后获得“p值”,本例p<0.01,结论:激素组与中药组两组间疗效差异有显著意义。

9、直线相关与回归【例9】丈量差别年事的儿童身高数据如下,问儿童年事与身高是否存在关联?在科研与临床事情中,许多问题是存在关联的,如体外貌积与身高、体重之间有显着的关联,直线的相关与回归即是研究两个变量之间的关联问题。两个变量的关联性分析,可以剖析为两个问题,一是这两个变量是否存在相互关联,即相关问题;二是如果两个变量是有关联的,那么是什么样的数量关系,即回归问题,通常以回归方程来表现。现在回到【例9】,研究儿童年事与身高之间是否存在关联呢?在软件中选择“直线相关与回归”,然后输入以上的数据,如下图。

盘算效果p<0.05,结论是儿童年事与身高之间存在显著的关联,并得出回归方程 y=44.5278+10.9822x(y表现身高,x表现年事)。三、结语现在已经讲完了9个实例,终于松了一口吻。

掌握统计学的诀窍是将实际中遇到的的情况,对照本教程中实例,“对号入座”即可,而详细盘算历程,可由软件去完成。最后再烦琐几句:1、两组计量资料用t磨练;2、多组计量资料用方差分析(F磨练);3、计数资料用卡方磨练;4、品级资料用用秩和磨练或Ridit分析。本文是出于通报更多信息之目的。

若有泉源标注错误或侵犯了您的正当权益,请作者持权属证明与本网联系,我们将实时更正、删除。


本文关键词:傻瓜,教程,—,医学,统计学,亚博,平台,APP,链接,亚博平台APP链接

本文来源:亚博平台APP链接-www.gotopltd.com